
The Australian National University
Final Examination – November 2020

Comp2310 & Comp6310 
Systems, Networks and Concurrency

	 Study period:	 15 minutes 
	 Time allowed:	 3.5 hours (after study period) 
	 Total marks:	 100 
	 Permitted materials:	 None

Questions are not equally weighted – sizes of answer boxes do not nec-
essarily relate to the number of marks given for this question.

All your answers must be written in the boxes provided in this exam form. You can use scrap paper for work-
ing, but only those answers written in this form will be marked. Do not upload your exam anywhere but the 
prescribed exam submission system. There is additional space at the end of the booklet in case the answer boxes 
provided are insufficient. Label any answer you write at the end of the exam form with the number of the ques-
tion it refers to and note at the question itself, that you provided addition material at the end.

Greater marks will be awarded for answers that are simple, short and concrete than for answers of a sketchy and 
rambling nature. Marks will be lost for giving information that is irrelevant to a question.

Student number:

The following are for use by the examiners

Q1 mark Q2 mark Q3 mark Q4 mark Q5 mark Q6 mark

               

Total mark

   



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 2 of 20

1.  [15 marks] General Concurrency

(a)	 [9 marks] Concurrent programming languages will always provide some form of con-
current entities. Their names vary widely (in Ada for instance they are called tasks), or 
they may not be mentioned at all as part of the syntax. Yet in all cases, the compiler 
will need to provide an implementation of those concurrent entities.

(i)  [3 marks] What are the options for the compiler designer to implement the concur-
rent entities of a concurrent programming language? Describe each option briefly.

(ii)  [6 marks] What are the advantages and disadvantages of each option?



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 3 of 20

(b)	 [6 marks] Which forms of hardware are supportive or required for the concurrent 
execution of your code? Enumerate them and discuss their impact on the performance 
of your programs briefly. Also state what needs to be done so that they can perform 
(optimally).



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 4 of 20

2.  [31 marks] Message Passing

(a)	 [23 marks] In an assignment, students were asked to provide a solution for a message 
buffer task, which provides the following properties: The buffer task shall …

a.	… read messages from this entry:
   type Notes is range 1 .. 10;

   task Buffer is
      entry Receive (Note : Notes);
   end Buffer;

b.	… deliver messages to a provided receiver task via this entry:
   task Receiver is
      entry Transmit (Note : Notes);
   end Receiver;

c.	… allow the sender (the task calling Receive) to send messages even if the Receiver is 
currently not available (as long as the buffer still has storage capacity). 

d.	… be able to store more than 1 message.
e.	… deliver messages in the same order in which they have been received.
f.	 … always be responsive to Receive, as long as the buffer still has storage capacity.
g.	… send out stored messages to the Receiver, as soon as the Receiver is available.
h.	… not use CPU time, when no messages can be passed.
i.	 … terminate when an invalid value is received.

The submissions of 3 students are below (all compile without warnings of course).

Student A:

task body Buffer is

  Store : Notes := Notes’Invalid_Value;

begin
   loop
      accept Receive (Note : Notes) do
         Store := Note;
      end Receive;
      exit when not Store’Valid; -- terminate Buffer on invalid value received
      Receiver.Transmit (Store);
   end loop;
end Buffer;



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 5 of 20

Student B: 

task body Buffer is

   Store     : Notes   := Notes’Invalid_Value;
   Shop_Open : Boolean := True;

begin
   while Shop_Open loop
      select
         when not Store’Valid => accept Receive (Note : Notes) do
            Store := Note;
            Shop_Open := Note’Valid;
         end Receive;
      else
         if Store’Valid then
            Receiver.Transmit (Store);
            Store := Notes’Invalid_Value;
         end if;
      end select;
   end loop;
end Buffer;



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 6 of 20

Student C: 

task body Buffer is

   type Index is mod 5;

   package Storage is new Queue_Pack_Protected_Generic (Notes, Index);
   use Storage;
   Store : Protected_Queue;

begin
   loop
      select
         accept Receive (Note : Notes) do
            Store.Enqueue (Note); -- can also Enqueue invalid values
         end Receive;
      else
         if not Store.Is_Empty then
            declare
               Note : Notes := Notes’Invalid_Value;
            begin
               Store.Dequeue (Note); 

                                                          -- raises Constraint_Error on invalid return value
               Receiver.Transmit (Note);
            end;
         end if;
      end select;
   end loop;
exception
   when Constraint_Error => null; -- terminate Buffer on invalid value received
end Buffer;

See questions on the following pages.



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 7 of 20

(i)  [15 marks] Evaluate all three student submissions with the form below. Tick all 
properties (by writing “x”) which have been successfully implemented and provide 
detailed feedback for improvements if the solution falls short of expectations.

Student A Student B Student C

Property

a.

b.

c.

d.

e.

f.

g.

h.

i.

Feedback:



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 8 of 20

(ii)  [8 marks] If you find all three student submissions lacking in some regard, provide 
your own solution below. Use any programming language of your choice (including 
pseudo code) to implement a buffer, which fulfils all required properties, and is based 
on synchronous message passing. If you find one of the student submissions already 
fulfils all requirements, then nominate that one for full marks.



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 9 of 20

(b)	 [8 marks] Assume that a concurrent programming language does not provide you with 
a synchronous message passing, but with some form of asynchronous message pass-
ing. This could be a synchronous queue or a maybe a completely asynchronous mes-
sage passing system. 

(i)  [8 marks] Construct a synchronous message passing system. Use any program-
ming language of your choice (including pseudo code). You should provide two meth-
ods, function, procedures, subroutines, processes, threads, or tasks (depending on 
the language of your choice and your design) to provide a synchronous sending and a 
synchronous receiving operation respectively. State your assumptions about the asyn-
chronous message passing system which you use as a foundation.



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 10 of 20

3.  [20 marks] Data Parallelism

(a)	 [12 marks] Some programming languages provide “implicit concurrency”. While it is 
good to automate things, it is also good to understand what is going on.  

(i)  [4 marks] Will implicit concurrency always, sometimes or never add synchroniza-
tion mechanisms (like locks) to your code? Give precise reasons for your answer.

(ii)  [4 marks] Can or will implicit concurrency take full advantage (in terms of maximal 
performance for your program) of all existing hardware? Give precise reasons for your 
answer.

(iii)  [4 marks] Can implicit concurrency lead to unsafe code (for example: race condi-
tions)? Give precise reasons for your answer. Which assumptions did you make to 
answer this question? 



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 11 of 20

(b)	 [8 marks] Write a program to implement the discrete cross-correlation function (as a 
discrete array) between two cyclic, discrete functions (which are themselves represent-
ed by discrete arrays) which optimizes for performance on an 8-core CPU with vector 
processing units (processing 8 16-bit integer numbers per vector operation):

_ ,Cross Correlation A B A Bk i i k
i

$= +^ ^h h/

Sequentially such a function could be implemented like this:

   subtype Input_Range  is Integer range -(2**15) .. +(2**15 - 1); 
   subtype Output_Range is Integer range -(2**31) .. +(2**31 - 1);

   type Samples is mod 2**16; 

   type Input_Function  is array (Samples) of Input_Range;
   type Output_Function is array (Samples) of Output_Range;

   function Cross_Correlation (A, B : Input_Function) return Output_Function is

      CC : Output_Function := (others => 0);

   begin
      for k in Samples loop
         for i in Samples loop
            CC (k) := CC (k) + A (i) * B (i + k);
         end loop;
      end loop;
      return CC;
   end Cross_Correlation;

Use any programming language of your choice (including pseudocode). State what you 
assume about your compiler.



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 12 of 20

4.  [11 marks] Scheduling

(a)	 [11 marks] The CPU scheduler on the computer which you are using right now has 
been carefully designed and optimized over decades. Let’s have a closer look:

(i)  [5 marks] What can your operating system know about the processes running on 
your computer?

(ii)  [3 marks] What information could your scheduler use to make a good decision of 
what to schedule next?

(iii)  [3 marks] What do you assume your scheduler will optimize for specifically, and 
how will it do that?



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 13 of 20

5.  [11 marks] Distributed Systems

(a)	 [11 marks] Mutual exclusion in distributed systems via Token Ring structures have 
been discussed in the lectures, yet we did not provide a concrete implementation to 
illustrate the method. Read the following Ada code carefully. It is syntactically correct 
and will compile without warnings. 

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO;             use Ada.Text_IO;

procedure Token_Ring_Mutual_Exclusion is

   Current_Token_Task : Task_Id := Current_Task; -- shared variable

   type Node;
   type Node_Access is access all Node;

   task type Node is
      entry Link (Next : Node_Access);
      entry Token;
   end Node;

   task body Node is

      Next_Node : Node_Access;

   begin
      accept Link (Next : Node_Access) do
         Next_Node := Next;
      end Link;
      loop
         
         Put_Line (“Previous token owner: “ & Image (Current_Token_Task));
         accept Token do
            Current_Token_Task := Current_Task;
            Put_Line (“Current token owner:  “ & Image (Current_Token_Task));
            Next_Node.all.Token;
         end Token;
         
         Put_Line (Image (Current_Task) & “ runs concurrently”);

      end loop;
   end Node;

   type No_Of_Nodes is mod 10;
   Nodes : array (No_Of_Nodes) of aliased Node;

begin
   for N in No_Of_Nodes loop
      Nodes (N).Link (Nodes (N + 1)’Access);
   end loop;

   Nodes (Nodes’First).Token;
end Token_Ring_Mutual_Exclusion;



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 14 of 20

The provided code is intended to illustrates mutually exclusive access (reading and 
writing) to a shared variable in an ongoing sequence of accesses from all tasks (the 
program is not designed to terminate). Current_Task (from Ada.Task_Identification) 
provides the Task_Id of the currently running task, i.e. the task calling Current_Task.

(i)  [2 marks] Will this program provide ongoing output? Or will it crash, dead-lock, or 
live-lock? Give detailed reasons for your answer.

(ii)  [3 marks] Does this code actually provide mutually exclusive access to the shared 
variable while also keeping all tasks running concurrently while they are not accessing 
this shared variable? Give detailed reasons for your answer.



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 15 of 20

(iii)  [6 marks] If you find the provided code lacking in some respect, please provide 
an alternative implementation below. Use any programming language of your choice 
(including pseudo code), that is based on synchronous message passing. If you find the 
provided implementation to be perfect, than nominate it for full marks.



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 16 of 20

6.  [12 marks] Networks & Time

(a)	 [6 marks] What OSI network layer 1 (physical layer) interfaces do you find in your 
computer? Enumerate them and name the network protocols which are utilizing those 
interfaces (for some you cannot know the associated protocols, so leave that open). 
Hint: not all of those interfaces will be accessible to you directly. We do not expect you 
to actually know all of them, but we expect you to be able to take an educated guess of 
what needs to be or will most likely be found in your computer.



Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 17 of 20

(b)	 [6 marks] Logical time (or Lamport time) is often preferred in computer applications 
over wall-clock time.

(i)  [3 marks] What are the advantages and disadvantages of logical time?

(ii)  [1 marks] What can you conclude if a process receives a message which has a logi-
cal time stamp which is larger then the logical time of the current process?

(iii)  [2 marks] What can you conclude if the logical time stamps of two events are iden-
tical?



continuation of answer to question    part  

 

continuation of answer to question    part  

Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 18 of 20



continuation of answer to question    part  

 

continuation of answer to question    part  

Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 19 of 20



continuation of answer to question    part  

 

continuation of answer to question    part  

Comp2310 & Comp6310	 Mid-Semester Exam 2020	 Page 20 of 20


	Student number: 
	Q1 mark: 
	Q2 mark: 
	Q3 mark: 
	Q4 mark: 
	Q5 mark: 
	Q6 mark: 
	Total mark: 
	rent entities of a concurrent programming language Describe each option briefly: 
	ii 6 marks What are the advantages and disadvantages of each option: 
	optimally: 
	undefined: 
	undefined_2: 
	undefined_3: 
	undefined_4: 
	undefined_5: 
	undefined_6: 
	undefined_7: 
	undefined_8: 
	undefined_9: 
	undefined_10: 
	undefined_11: 
	undefined_12: 
	undefined_13: 
	undefined_14: 
	undefined_15: 
	undefined_16: 
	undefined_17: 
	undefined_18: 
	undefined_19: 
	undefined_20: 
	undefined_21: 
	undefined_22: 
	undefined_23: 
	undefined_24: 
	undefined_25: 
	undefined_26: 
	undefined_27: 
	Feedback: 
	undefined_28: 
	undefined_29: 
	fulfils all requirements then nominate that one for full marks: 
	chronous message passing system which you use as a foundation: 
	tion mechanisms like locks to your code Give precise reasons for your answer: 
	answer: 
	answer this question: 
	assume about your compiler: 
	your computer: 
	what to schedule next: 
	how will it do that: 
	livelock Give detailed reasons for your answer: 
	this shared variable Give detailed reasons for your answer: 
	provided implementation to be perfect than nominate it for full marks: 
	what needs to be or will most likely be found in your computer: 
	i 3 marks What are the advantages and disadvantages of logical time: 
	cal time stamp which is larger then the logical time of the current process: 
	tical: 
	continuation of answer to question part: 
	continuation of answer to question: 
	part: 
	continuation of answer to question part_2: 
	continuation of answer to question_2: 
	part_2: 
	continuation of answer to question part_3: 
	continuation of answer to question_3: 
	part_3: 
	continuation of answer to question part_4: 
	continuation of answer to question_4: 
	part_4: 
	continuation of answer to question part_5: 
	continuation of answer to question_5: 
	part_5: 
	continuation of answer to question part_6: 
	continuation of answer to question_6: 
	part_6: 


